Plasmonic Waveguide Thesis Statements


J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for Designing Metallic Metamaterials with a High Index of Refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[Crossref] [PubMed]

K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13, 256–266 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-256
[Crossref] [PubMed]

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13, 977–984 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-977
[Crossref] [PubMed]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Optics Letters 29, 1069–1071 (2004).
[Crossref] [PubMed]

F. I. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microscopy 213, 144–148 (2004).
[Crossref]

D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor Torres, “Nanopillars photonic crystal waveguides,” Opt. Express 12, 617–622 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-617
[Crossref] [PubMed]

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
[Crossref]

G. Shvets, “Photonic approach to making a material with a negative index of refraction,” Phys. Rev. B 67, 035109 (2003).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[Crossref]

T. Yatsui, M. Kourogi, and M. Ohtsu, “Plasmon waveguide for optical far/near-field conversion,” Appl. Phys. Lett. 79, 4583–4585 (2001).
[Crossref]

J. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-12-655
[Crossref]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[Crossref]

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10, 696 (2000).
[Crossref]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[Crossref]

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[Crossref]

P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

F. I. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microscopy 213, 144–148 (2004).
[Crossref]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[Crossref]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[Crossref]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[Crossref]

F. I. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microscopy 213, 144–148 (2004).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
[Crossref]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[Crossref]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for Designing Metallic Metamaterials with a High Index of Refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[Crossref] [PubMed]

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
[Crossref]

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[Crossref]

P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[Crossref]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for Designing Metallic Metamaterials with a High Index of Refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[Crossref] [PubMed]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[Crossref]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[Crossref]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[Crossref]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Optics Letters 29, 1069–1071 (2004).
[Crossref] [PubMed]

F. I. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microscopy 213, 144–148 (2004).
[Crossref]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, MA2000).

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[Crossref]

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).
[Crossref]

P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

T. Yatsui, M. Kourogi, and M. Ohtsu, “Plasmon waveguide for optical far/near-field conversion,” Appl. Phys. Lett. 79, 4583–4585 (2001).
[Crossref]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[Crossref]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[Crossref]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[Crossref]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[Crossref]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[Crossref]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[Crossref]

S. A. Maier, Guiding of electromagnetic energy in subwavelength periodic metal structures, PhD Thesis, (California Institut of Technology, Pasadena2003).

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10, 696 (2000).
[Crossref]

T. Yatsui, M. Kourogi, and M. Ohtsu, “Plasmon waveguide for optical far/near-field conversion,” Appl. Phys. Lett. 79, 4583–4585 (2001).
[Crossref]

F. I. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microscopy 213, 144–148 (2004).
[Crossref]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Optics Letters 29, 1069–1071 (2004).
[Crossref] [PubMed]

H. Raether, Surface Plasmons (Springer, Berlin1988).

W. M. Saj, Application of Finite Difference Time Domain Method to Modeling of Photonic Crystal Fibers, Msc Thesis (in Polish) (Warsaw University, Warsaw2003).

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[Crossref]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[Crossref]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for Designing Metallic Metamaterials with a High Index of Refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[Crossref] [PubMed]

G. Shvets, “Photonic approach to making a material with a negative index of refraction,” Phys. Rev. B 67, 035109 (2003).
[Crossref]

C. Sönnichsen, Plasmons in metal nanostructures, PhD Thesis (Ludwig-Maximilians-Universtät München, München, 2001).

Скорее всего это игры Стратмора: он мудро решил не впутывать в это дело агентство. - Фильтры Протокола передачи файлов выходят из строя! - крикнул кто-то из технического персонала.

- Нам нужен этот предмет, - сказал Фонтейн.  - Где сейчас находится Халохот.

0 thoughts on “Plasmonic Waveguide Thesis Statements

Leave a Reply

Your email address will not be published. Required fields are marked *